J. Chem. Research (S), 1997, 168–169†

Akihiko Tsuge,*" Yasuhiro Ueda," Tadashi Araki" Tetsuji Moriguchi," Kazunori Sakata," Keizo Koya,^b Shuntaro Mataka^b and Masashi Tashiro^b

^aDepartment of Chemistry, Kyushu Institute of Technology, Tobata-ku, Kitakyushu 804, Japan ^bInstitute of Advance Material Study, Kyushu University, Kasuga, Fukuoka 816, Japan

A novel 1,8-bridged fluorenophane (4a) is found to assume an 'inward-folded' conformation with the bulky *tert*-butyl group located in the cavity, a situation which is different from the conformation of the corresponding dithiafluorenophane (3a).

Cyclophanes are cyclic compounds consisting of aromatic units. Many aromatic components have been used in the cyclophane skeleton.¹ Considerable attention has been paid to particular properties of the components, because of the strained structure of the ring system and its ability to form π -electronic interactions. It is of interest to examine the properties of a fluorene unit in cyclophane compounds, because of its aromatic nature and acidic proton. To the best of our knowledge, however, [2.2](2,7)fluorenophane is the only example² to have been investigated so far. This is due to difficulties in introducing a functional group into sites other than the 2- and 7-positions by electrophilic reactions. In previous work³ we found that a chloromethyl group can be introduced into the 1,8-positions of the fluorene molecule by treatment with chloromethyl methyl ether in the presence of an appropriate Lewis acid. This chloromethylated fluorene should be a precursor for the synthesis of fluorenophane compounds. Thus, we describe here the synthesis of novel 1,8-bridged fluorenophanes and their conformational

Treatment of 3,6-di-*tert*-butylated fluorenophane with chloromethyl methyl ether in the presence of TiCl₄ gave the 1,8-bis(chloromethyl)fluorene 1 in 58% yield. Bromination of 4-*tert*-butyl-*m*-xylene with *N*-bromosuccinimide (NBS), followed by treatment with thiourea afforded the bis(thiol) 2a. Compounds 2b and 2c were obtained according to reported methods.⁴ Cyclization of 1 and 2a-c using CsOH as a base under highly dilute conditions afforded the corresponding dithiafluorenophanes (3a-c) in 72–84% yields (Scheme 1).

The ¹H NMR spectra of **3a-c** are summarized in Table 1. Signals for the CH₂ bridge reflect the dynamic behaviour of the dithiafluorenophane. The C-9 hydrogens of **3a** show a broad singlet, indicating that inversion of the ring at room temperature is slow on the NMR time-scale. In contrast, a pair of doublets with a separation of 22 Hz was observed in the spectra of **3b** and **3c**. These results strongly suggest that the barrier to inversion in dithiafluorenophanes depends on the bulkiness of the inner substituent (R).

In order to determine for **3a** the coalescence temperature and the free energy of activation for inversion, the temperature-dependent 1H NMR technique was employed. The measured barrier for the observed dynamic process is 11.54 kcal mol $^{-1}$ at -15 °C in CDCl $_3$.‡

In contrast, there were no changes in the NMR signals for **3b** or **3c**, even at 150 °C in [${}^{2}H_{6}$]Me₂SO, indicating that **3b** and **3c** have rigid structures.

We have already prepared various metacyclophanes consisting of three aromatic rings and confirmed their 'inward-folded' conformation, which is characterized by one aromatic

Scheme 1 Reagents and conditions: i, CsOH, EtOH;; ii, MCPBA, then $500~^{\circ}\text{C}$, 2 Torr

ring being folded into the cavity produced by the other two aromatic rings.⁵

Taking into account these results and the chemical shifts of the *tert*-butyl protons, it may be deduced that the dithia-fluorenophanes **3a-c** assume a conformation in which the substituent R of the benzene ring is accommodated inside the cavity. After oxidation of **3a-c** with *m*-chloroperbenzoic acid (MCPBA), pyrolysis was carried out in order to obtain the fluorenophanes **4a-c** (Scheme 1). However, in spite of repeated trials, all attempts to prepare **4b** and **4c** resulted in failure, in most cases only the dimethyl compound **5** being isolated from very complex mixtures. In contrast, in the case of **3a** the desired fluorenophane **4a** was obtained in 29% yield. This is certainly due to steric hindrance of the substituent R during recombination of radical intermediates in pyrolysis: even when hydrogen was the substituent, the yield was not good.

Data for the ¹H NMR spectrum of **4a** are also shown in Table 1. In **4a** it is noted that the protons of the *tert*-butyl group attached to the benzene ring show an unexpectedly upfield shift, suggesting a conformation in which the *tert*-butyl group is located in the cavity formed by the π -cloud of the fluorene ring. This is in fairly good agreement with a considerable upfield shift of the aromatic protons adjacent to

^{*}To receive any correspondence (*e-mail*: tsuge@che.kyutech.ac.jp). †This is a **Short Paper** as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research (S)*, 1997, Issue 1]; there is therefore no corresponding material in *J. Chem. Research (M)*. ‡1 cal = 4.184 J.

Table 1 ¹H NMR spectra of fluorenophanes [δ values (CDCI $_{\delta}$)]

Compound	Bu ^t	R	9-H
1	1.41 (18 H)		3.95 (s)
3a	1.33 (9 H) 1.37 (18 H)	7.09 (Ar-H)	2.69 (br s)
3b	1.32 (9 H)	2.39	1.89 (d, <i>J</i> 22 Hz)
	1.36 (18 H)	(CH ₃)	2.90 (d, <i>J</i> 22 Hz)
3c	1.32 (9 H)	3.86	2.03 (d, <i>J</i> 22 Hz)
	1.36 (18 H)	(OCH ₃)	3.20 (d, <i>J</i> 22 Hz)
4a	0.69 (9 H)	7.09	3.07 (d, <i>J</i> 19 Hz)
	1.37 (18 H)	(Ar-H)	3.80 (d, <i>J</i> 19 Hz)

the tert-butyl group. Inversion of one aromatic ring occurs during the transformation into a smaller cyclic system (Scheme 2).

Further investigations of other types of 1,8-bridged fluorenophanes are in progress.

Experimental

All melting points are uncorrected. ¹H NMR spectra were recorded at 500 MHz on a Nippon Denshi JEOL α-500 spectrometer in CDCl₃ with Me₄Si as an internal reference. Mass spectra were obtained on a Nippon Denshi JEOL DX-300 spectrometer at 75 eV using a direct-inlet system. Elemental analyses were carried out on a Yanaco MT-3 spectrometer. Column chromatography was performed on silica gel (Wako gel, C-300).

(3-tert-Butyl-5-sulfanylmethylphenyl)methanethiol 2a.—A solution of 1,3-bis(bromomethyl)-5-tert-butylbenzene (30 g, 93 mmol) and thiourea (18.0 g, 0.24 mol) in DMSO (450 ml) was stirred at room tempearture for 15 h under an argon stream. After the reaction mixture had been poured into cold 10% aqueous NaOH (500 ml) and acidified with 10% hydrochloric acid, it was extracted with CH₂Cl₂. The extract was washed with water, dried over MgSO₄, and evaporated in vacuo to leave a residue which was distilled to afford the bis(thiol) 2a (16.5 g, 79%) as a colourless liquid, bp 140–145 °C at 2 Torr (Found: C, 63.86; H, 8.13. C₁₂H₁₈S₂ requires C, 63.65; H, 8.03%); m/z 226 (M⁺); $\delta_{\rm H}$ 1.31 (9 H, s), 1.75 (2 H, t, J 8 Hz), 3.70 (4 H, d, J 8 Hz), 7.12 (1 H, s), 7.19 (2 H, s).

Dithiafluorenophanes 3. General Procedure: Preparation of 6,15,18-tri-tert-butyl-2,11-dithia[3]metacyclo[3](1,8)fluorenophane A solution of 1^3 (1.09 g, 2.9 mmol) and 2a (0.70 g, 3.1 mmol) in EtOH-benzene (1:1; 300 ml) was added dropwise from a Hershberg funnel with stirring to a solution of CsOH (1.21 g, 8.07 mmol) and NaBH₄ (0.12 g, 3.2 mmol) in EtOH (2 l) for 1 h. After solvents had been evaporated, the residue was extracted with CH₂Cl₂. The extract was washed with water, dried over MgSO4, and evaporated in vacuo to give 3a (1.22 g, 79%) as colourless prisms, mp 234–235 °C (from hexane) (Found: C, 79.32; H, 8.41. $C_{35}H_{44}S_2$ requires C, 79.47; H, 8.40%); m/z 528 (M⁺); $\delta_{\rm H}$ 1.34 (9 H, s), 1.38 (18 H, s), 2.70 (2 H, br s), 3.70 (4 H, s), 3.74 (4 H, s), 7.17 (2 H, d, J 1.5 Hz), 7.19 (2 H, s), 7.45 (1 H, s), 7.62 (2 H, d, J 1.5 Hz).

6,15,18-Tri-tert-butyl-2,11-dithia[3] metacyclo[3](1,8) fluorenophane 3b.—3b was obtained according to the general procedure. phane 3b.—3b was obtained according to the general procedure. Thus 1^3 (0.53 g, 1.41 mmol) and $2b^4$ (0.35 g, 1.46 mmol) gave 3b (0.64 g, 84%) as colourless prisms, mp 189–191 °C (from hexane) (Found: C, 79.83; H, 8.49. $C_{36}H_{46}S_2$ requires C, 79.63; H, 8.56%); m/z 542 (M⁺); δ_H 1.32 (9 H, s), 1.36 (18 H, s), 1.90 (1 H, d, J 22 Hz), 2.39 (3 H, s), 2.90 (1 H, d, J 22 Hz), 3.48 (2 H, d, J 12 Hz), 3.74 (2 H, d, J 14 Hz), 3.95 (2 H, d, J 14 Hz), 3.99 (2 H, d, J 12 Hz), 7.14 (2 H, s), 7.15 (2 H, d, J 1.5 Hz), 7.61 (2 H, d, J 1.5 Hz). 6,15,18-Tri-tert-butyl-9-methoxy-2,11-dithia[3] metacyclo[3]-(1.8) fluorenophane 3c —3c was obtained according to the general

(1,8) fluorenophane 3c.—3c was obtained according to the general procedure. Thus 1^3 (0.32 g, 0.85 mmol) and $2c^4$ (0.23 g, 0.90 mmol) gave **3c** (0.34 g, 72%) as colourless *prisms*, mp 191–193 °C (from hexane) (Found: C, 77.58; H, 8.50. C₃₆H₄₆S₂O requires C, 77.35; H, 8.21%) (1.55) (8.31%); m/z 558 (M⁺); $\delta_{\rm H}$ 1.32 (9 H, s), 1.35 (18 H, s), 2.03 (1 H, d, J 22 Hz), 3.21 (1 H, d, J 22 Hz), 3.51 (2 H, d, J 12 Hz), 3.60 (2 H, d, J 14 Hz), 3.86 (3 H, s), 3.93 (2 H, d, J 14 Hz), 3.99 (2 H, d, J 12 Hz),

7.13 (2 H, d, *J* 1.5 Hz), 7.18 (2 H, s), 7.58 (2 H, d, *J* 1.5 Hz). 5,13,16-*Tri*-tert-*butyl*[2]*metacyclo*[2](1,8)*fluorenophane* 4a.—The sulfone derivative of 3a (0.52 g, 0.88 mmol) was pyrolysed at 500 °C under reduced pressure (2 Torr) in a horizontal quartz tube. The resultant product was chromatographed with hexane as an eluent to afford **4a** (0.12 g, 29%) from the first fraction as colourless *needles*, mp 296–298 °C (from hexane) (Found: C, 90.16; H, 9.66. $C_{35}H_{44}$ requires C, 90.44; H, 9.54%); m/z 464 (M⁺); $\delta_{\rm H}$ 0.69 (9 H, s), 1.37 (18 H, s), 2.93–3.86 (8 H, m), 3.07 (1 H, d, J 19 Hz), 3.80 (1 H, d, J 19 Hz), 5.83 (2 H, s), 6.91 (2 H, d, J 1.5 Hz), 7.09 (1 H, s), 7.23 (2 H, d, J 1.5 Hz).

Received, 5th August 1996; Accepted, 21st January 1997 Paper E/6/05440D

References

- 1 F. Vögtle, Supramolecular Chemistry, Wiley, Chichester, 1989; F. Diederich, Cyclophanes, The Royal Society of Chemistry, Cambridge, 1991; F. Vögtle, Cyclophane Chemistry, Wiley, Chichester,
- 2 M. W. Haenel, Tetrahedron Lett., 1976, 3121; 1977, 1273.
- A. Tsuge, T. Yamasaki, T. Moriguchi, T. Matsuda, Y. Nagano, H. Nago, S. Mataka, S. Kajigaeshi and M. Tashiro, Synthesis, 1993,
- 4 M. Tashiro and T. Yamato, *J. Org. Chem.*, 1981, **46**, 1543. 5 A. Tsuge, T. Sawada, S. Mataka, N. Nishiyama, H. Sakashita and M. Tashiro, J. Chem. Soc., Chem. Commun., 1990, 1066; A. Tsuge, T. Sawada, S. Mataka, N. Nishiyama, H. Sakashita and M. Tashiro, J. Chem. Soc., Perkin Trans 1, 1992, 1489; A. Tsuge, H. Takeo, H. Kabashima, T. Moriguchi, S. Mataka and M. Tashiro, Chem. Lett., 1996, 425.